Indrashil University

Department of Chemistry School of Science

B.Sc. Chemistry Semesters I-IV

Course Profile

Academic Year: 2023 - 2024

Course structure: Semester I

Semester-I	Minimum Semester Credit Required: 22 Cumulative Semester Credit Required: 22			
Course Type	Course Code	Course Name	L-T-P	Credits
Major Discipline Core	CH1 101	MDC-1: Organic Chemistry-I	2-0-0	2
(MDC)	CH1 102	MDC-2: Analytical Chemistry-I	2-0-0	2
	CH1 103	MDC-3: Lab-1: Organic Practicals-I	0-0-4	2
	CH1 104	MDC-4: Lab-2: Analytical Practicals-I	0-0-4	2
Minor Discipline	CH1 105	MDE-1: Chemistry in Daily Life	2-0-0	2
Elective (MDE)	CH1 106	MDE-2: Lab-3: Chemistry in Daily Life	0-0-4	2
Multi-Disciplinary	CH1 107	MDS-1: Biology for Chemists	2-0-0	2
(MDS)	CH1 108	MDS-2: Lab-4: Biology for Chemists	0-0-4	2
Ability Enhancement	CH1 109	AEC-1: English Language-1	2-0-0	2
Course (AEC)				
Skill Enhancement	CH1 110	SEC-1: Computer Technology & IT Skills for	1-0-2	2
Course (SEC)		Chemists		
/Internship				
Value Added Course	CH1 111	IKS-1: (Indian Knowledge System course for	1-0-2	2
(VAC)/ Indian		Science students) Traditional Yoga and its		
Knowledge System		Modernization for Health Benefits		
(IKS)				
	Total			22
= 32 hrs.				

Course structure: Semester II

Semester II	Semester II Minimum Semester Credit Required: 22 Cumulative Semester Credit Required: 44			
Course Type	Course Code	Course Name	L-T-P (Hour)	Credits
Major Discipline Core	CH1 201	Inorganic Chemistry-I	2-0-0	2
(MDC)	CH1 202	Physical Chemistry-I	2-0-0	2
	CH1 203	Inorganic Chemistry - I Laboratory	0-0-4	2
	CH1 204	Physical Chemistry – I Laboratory	0-0-4	2
Minor Discipline	CH1 205	Chemistry of Materials	2-0-0	2
Elective (MDE)	CH1 206	Chemistry of Materials Laboratory	0-0-4	2
Multi-Disciplinary	CH1 207	Physics of Semiconductor Devices	2-0-0	2
(MDS)	CH1 208	Physics of Semiconductor Devices Laboratory	0-0-4	2
Ability Enhancement Course (AEC)	CH1 209	AEC-1: English Language-2	2-0-0	2
Skill Enhancement Course (SEC)	CH1 210	SEC-1: Techniques of Chemical Analysis	1-0-2	2
Value Added Course (VAC)	CH1 211	Health and Nutrition	1-0-2	2
Total 12L+0T+20P 22				

Course structure: Semester III

Semester-III	Minimum Semester Credit Required: 22 Cumulative Semester Credit Required: 66			
Course Type	Course Code	Course Name	L-T-P	Credits
Major Discipline Core	CH2 101	Organic Chemistry-II	2-0-0	2
(MDC)	CH2 102	Inorganic Chemistry-II	2-0-0	2
	CH2 103	Physical Chemistry-II	2-0-0	2
	CH2 104	Organic Chemistry-II Laboratory	0-0-4	2
	CH2 105	Inorganic Chemistry - II Laboratory	0-0-4	2
	CH2 106	Physical Chemistry - II Laboratory	0-0-4	2
Minor Discipline Elective (MDE)				
Multi-Disciplinary	CH2 107	Semiconductor Devices	2-0-0	2
(MDS)	CH2 108	Semiconductor Devices Laboratory	0-0-4	2
Ability Enhancement Course (AEC)	CH2 109			2
Skill Enhancement Course (SEC)	CH2 110 Laboratory Operations and Safety 2-0-0 Measures		2-0-0	2
Indian Knowledge System (IKS)	CH2 111	Indian Culture and Civilization	2-0-0	2
	Total			22

Course structure: Semester IV

Semester-IV	Minimum Semester Credit Required: 22 Cumulative Semester Credit Required: 88			
Course Type	Course Code	Course Name	L-T-P	Credits
Major Discipline	CH2 201	Organic Chemistry-III	2-0-0	2
Core (MDC)	CH2 202	Inorganic Chemistry-III	2-0-0	2
	CH2 203	Physical Chemistry-III	2-0-0	2
	CH2 204	Organic Chemistry–III Laboratory	0-0-4	2
*	CH2 205	Inorganic Chemistry-III Laboratory	0-0-4	2
	CH2 206	Physical Chemistry-III Laboratory	0-0-4	2
Minor Discipline	CH2 207	Application of Semiconductors	2-0-0	2
Elective (MDE)	CH2 208	Application of Semiconductors Laboratory	0-0-4	2
Multi-Disciplinary (MDS)				
Ability Enhancement Course (AEC)	CH2 209	Professional Communications	2-0-0	2
Skill Enhancement Course (SEC)	CH2 210	Software for Scientific Learning	2-0-0	2
Indian Knowledge System (IKS)	СН2 211	Renewable Energy	2-0-0	2
		Total	14L+0T+16L = 32 h	22

B.Sc. Chemistry Semester I Detailed syllabus

Course Code	CH1 101	
Course Name	Course Name MDC-1: Organic Chemistry-I	
L-T-P-C 2-0-0-2		
Ur	nit I	
Syllabus	5	Hours
Fundamentals of Organic Chemistry		15
Physical Effects, electronic displacements: inductive		
hyperconjugation. Cleavage of bonds: Homolysis and hete		
Structure, shape and reactivity of organic molecu		
intermediates: Carbocations, carbanions and free ra	dicals. Examples of simple natural molecules	
synthesized by cationic and anionic intermediates.		
Strength of organic acids and bases: Comparative study	y with emphasis on factors affecting pK values.	
Aromaticity: Benzenoids and Hückel's rule.		
Stereochemistry		
Conformations with respect to ethane, butane and cy		
Newmann, Sawhorse and Fischer representations. Concept of chirality (up to two carbon atoms).		
Configuration: Geometrical and optical isomerism; Enantiomerism, diastereomerism and meso		
compounds). <i>Threo</i> and <i>erythro</i> ; D and L; <i>cis</i> – <i>trans</i> nomenclature; CIP Rules: R/S (for up to 2 chiral carbon atoms) and E/Z nomenclature (up to two carbon systems).		
	it II	
Syllabus		Hours
Aliphatic Hydrocarbons	,	15
Functional group approach for the following reactions (p	reparations & reactions) to be studied in context	10
to their structure.	reparations of reactions, to be seattled in content	
Alkanes (up to 5 carbons): Preparation: Catalytic hydrog	enation, Wurtz reaction, Kolbe's synthesis, Corev	
House reaction, from Grignard reagent. Reactions: Free ra	•	
Alkenes (up to 5 carbons): Preparation: Elimination reactions: Dehydration of alkenes and		
dehydrohalogenation of alkyl halides (Saytzeff's rule), cis alkenes (partial catalytic hydrogenation) and		
trans alkenes (Birch reduction). Reactions: cis-addition (alk. KMnO ₄) and trans-addition (bromine), addition		
of HX (Markownikoff's and anti-Markownikoff's addition), hydration, ozonolysis, oxymecuration-		
demercuration, hydroboration-oxidation. Example of poly		
Alkynes (up to 5 Carbons): <i>Preparation:</i> Acetylene fro		
dehalogenation of tetra halides and dehydrohalogenation		
Reactions: Formation of metal acetylides, addition of bro	mine and alkaline KMnO ₄ , ozonolysis and	
oxidation with hot alkaline KMnO ₄ .		

- 1. Morrison Boyd and Bhattacharjee. Organic Chemistry. Pearson Education India. 2010, 7th Ed.
- 2. S. M. Mukherji, S. P. Singh and R. K. Kapoor. Organic Chemistry. Narosa Publishers. 2017, Volume I and II.
- 3. Arun Bahl and B. S Bahl. A text book of Organic Chemistry. S. Chand Publications. 2016, 22nd Ed.
- 4. R L Madan. Chemistry for Degree students B. Sc semester-I Inorganic/Organic. S. Chand Publications. 2016.
- 5. I. L. Finar. Organic Chemistry (Volume I), Dorling Kindersley (India) Pvt. Ltd. Pearson Education. 1963, 4th Ed.
- 6. L. G. Wade, J. W. Simek and M. S. Singh. Organic Chemistry. Pearson India Education Services Pvt. Ltd. 2020, 9th Ed.

Course Code:	CH1 102	
Course Name:	MDC-2: Analytical Chemistry-I	
L-T-P-C	2-0-0-2	
Ur	nit I	
Syllabus	3	Hours
Language of analytical chemistry: Definitions: Analys methods. Classification of analytical techniques. Choice of Errors and treatment of analytical data: Limitations of Errors: Determinate and indeterminate errors, absoluted Statistical treatment of finite samples -mean, median, restandard calibration - regression equation (least square	an analytical method. Significant figures. analytical methods. te error, relative error, minimization of errors. ange, standard deviation and variance. External method), correlation coefficient (R2). Accuracy,	15
precision, sensitivity, selectivity, method validation. Fig		
detection (LOD), Limit of quantification (LOQ), linear dyn	it II	
Syllabus		Hours
Titrimetric analysis: Basic principle of titrimetric anareagents/solutions. Equivalent masses of compounds, a solution. Use of N ₁ V ₁ = N ₂ V ₂ formula, preparation of pp conversion factors. Acid-base titrimetry: Basic principle, example, titration of strong base and weak base vs strong acid titrations. Titration and standardizing a titrant, inorganic analysis - alkalinity, Complexometric titrimetry: Basic principle, examples, i indicators, titration methods employing EDTA - direct, Application-determination of the hardness of water. Precipitation titrimetry: Basic principle, examples, titration precipitation titrations involving silver nitrate, Volhard's Gravimetric analysis: Requisites of precipitation, m precipitation, Co-precipitation, post-precipitation. Advantagents used in gravimetry (8-hydroxy quinoline (ox problems.	normality, molarity and mole fraction, per cent m level solutions from source materials (salts), curves for strong acid vs strong base, weak acid vs ation curves, Quantitative applications – selecting acidity. Indicators for EDTA titrations, theory of metal ion back, displacement and indirect determinations. It ion curves, titrants and standards, indicators for and Mohr's methods and their differences. In echanism of precipitation, Factors influencing tages of organic reagents over inorganic reagents,	15

- 1. J. Mendham, R. C. Denney, J. D. Barnes and M. J. K. Thomas. Vogel's Textbook of Quantitative Chemical Analysis, Third Indian Reprint, Pearson Education Pvt. Ltd. 2007, 6th Ed.
- 2. G.D. Christian. Analytical Chemistry. Wiley-India. 2007, 6th Ed.
- 3. B. B. L Shrivastava and Amarnath Mishra. Fundamentals of Analytical Chemistry. Innovative Publications. 2019, Reprint Ed.
- 4. S. M. Khopkar Basic Concepts of Analytical Chemistry. New Age International. 2022, 5th Ed.

Course (Code: CH1 103	
Course Name: MDC-2: Lab-1: Organic Practicals-I		
L-T-P-C 0-0-4-2		
	List of experiments to be conducted	
S.No.	Objectives	Hours
1.	Detection of elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra elements	4
2.	Selection of suitable solvents for purification/crystallization of organic compounds.	4
3.	Simple distillation of a volatile compound from a mixture of components	4
4.	Visualization of molecular chirality in the organic chemistry laboratory	4
5.	Identification and separation of the components in a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine, or any other amino acid) by paper chromatography	
6.	Identification and separation of the sugars present in the given mixture by paper chromatograph	y. 4
7.	Preparation of acetanilide from aniline using Zn/acetic acid (Green method).	4
8.	Synthesis of p-nitro acetanilide from acetanilide using nitrating mixture.	
9.	Hydrolysis of methyl m-nitrobenzoate to m-nitrobenzoic acid (Conventional method)	4
10.	Synthesis of diazoamino benzene from aniline (conventional method).	
11.	Preparation of dibenzalacetone (Green method).	
	List of virtual experiments	
Separatio	on of mixtures by chromatography: Measurement of R_{f} value (separation of two components)	
Separatio	on of chemical components using column chromatography	

- 1. G. Svehla and B. Sivasankar. Vogel's Qualitative Inorganic Analysis. Pearson Education. 2012, 7th Ed.
- 2. J. Mendham. Vogel's Quantitative Chemical Analysis. Pearson. 2009, 6th Ed.
- 3. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford and Smith, P. W. G. Textbook of Practical Organic Chemistry. Prentice-Hall. 1996, 5th Ed.
- 4. F. G Mann and B. C. Saunders. Practical Organic Chemistry Orient-Longman, Pearson Education India. 1960, 4th Ed.

Course	Course Code: CH1 104	
Course	Course Name: MDC-2: Lab-2: Analytical Practicals-I	
L-T-P-C 0-0-4-2		
	List of experiments to be conducted	
S. No.	Objectives	Hours
1.	Safety practices in the chemistry laboratory, knowledge about common toxic chemicals, and safety measures in the handling, cleaning, and drying of glass wares.	7 4
2.	Calibration of the pipette, burette, and volumetric flask. Concept of primary and secondary standard.	
3.	Determination of sodium carbonate and sodium bicarbonate in a mixture.	
4.	Determination of alkali present in soaps and detergents. Comparison with the listed quantity in commercial products. Discussion of discrepancies.	4
5.	Estimation of iron (II) using potassium dichromate	
6.	Standardization of potassium permanganate using oxalic acid primary standard solution	
7.	Standardization of EDTA solution and determination of hardness of water	4
8.	Determination of alkali content in antacid	
9.	Standardization of silver nitrate and determination of chloride in tap water	
	List of virtual experiments	
Determ	nination of ferric ion in ferric oxide salt	·
	netric estimation of barium from its salt solution	
Gravim	netric estimation of nickel from its salt solution	

- 1. John H. Kennedy. Analytical Chemistry Practice. Saunders College Publishing. 1990, 2nd Ed.
- 2. J. Mendham. Vogels Textbook of Quantitative Chemical Analysis. Pearson Education. 2002, 6th Ed.
- 3. A. I. Vogel. A Text Book of Quantitative Inorganic Analysis. Elbs Publication. 1969, 3rd Ed.

Course Code:	urse Code: CH1 105	
urse Name: MDE-1: Chemistry in Daily Life		
L-T-P-C	2-0-0-2	
U	nit I	
Syllabu	IS	Hours
Dairy Products: Composition of milk and milk products and minerals in milk and butter. Estimation of added was Beverages: Analysis of caffeine in coffee and tea, detect determination of methyl alcohol in alcoholic beverages. Food additives, adulterants, and contaminants: Food propionates, sorbates, and disulphites. Artificial sweeter melamine, formalin, and sodium cyclamate. Flavors: Var glutamate. Vitamins: Classification and nomenclature. Sources, de Vitamin B1, Vitamin C, Vitamin D, Vitamin E & Vitamin (bioavailability). Oils and fats: Composition of edible oils, detection of pulike argemone oil and mineral oils. Halphen test.	ater in milk. Compare milk from different sources. cion of chicory in coffee, chloral hydrate in toddy, preservatives like benzoates, ners: Aspartame, saccharin, dulcin, sucralose, MSG, nillin, alkyl esters (fruit flavors), and monosodium eficiency diseases, and structures of Vitamin A1, n K1. Comparison of vitamins from food and pills	15
	nit II	•
Syllabu	IS	Hours
Soap and Detergents: Definition classification, history detergents, compositions and uses. Chemistry of Cosmetics & Perfumes: A general study in dye, hair spray, shampoo, suntan lotions, face powder, li vanishing and shaving creams), antiperspirants and artifice themistry of Pesticide: General introduction to pestice effects, uses of representative pesticides in the following Organophosphates (malathion, parathion); Carbamates Anilides (alachlor and butachlor). Hazards associated with	icluding preparation and uses of the following: Hair psticks, talcum powder, nail enamel, creams (cold, cial flavours. ides (natural and synthetic), benefits and adverse ing classes: Organochlorines (DDT, gammexene,); (carbofuran and carbaryl); Quinones (Chloranil),	15

- 1. B. K. Sharma. Introduction to Industrial Chemistry. Goel Publishing, Meerut. 1998.
- 2. Ashutosh Kar. Medicinal Chemistry. New Age International Publishers. 2018, 7th Ed.
- 3. H. E. Cox and David Pearson. Analysis of Foods. Chemical Pub Co. 1962.
- 4. Fred Billmeyer. Textbook of polymer science. Willey. 2007, 3rd Ed.
- 5. N. Shakuntala Many and S. Swamy. Foods: Facts and Principles. New Age International. 1998, 4th ed.
- 6. Swaminathan and Goswamy. Handbook on Fertilizer Technology. FAI. 2001, 6th Ed.

Course (Course Code: CH1 106		
Course Name: MDE-3: Lab-3: Chemistry in Daily Life			
L-T-P-C	P-C 0-0-4-2		
	List of experiments	to be conducted	
S. No.	Objectiv	res	Hours
1.	Preparation and characterization of soaps and det	tergents.	10
2.	Synthesis. of aspirin from salicylic acid		10
3.	Detection of aldehyde using Fehling's test.		10
4.	Test of unsaturation in ghee and oil using potassiu	ım permanganate or Bromine water	10
5	Chemical analysis of caffeine content in tea and co	offee samples	10
6.	Identification of cottonseed oil (Halphen's Test).		10
Virtual experiments			
Detection of Castor Oil (Molybdate Method)			
Detection of food adulterations; e.g.; test of urea in milk, metallic colors in haldi, bran in wheat flower, sugar in			
honey, chalk in salt etc.			

1. Elias Anil. A Collection of Interesting General Chemistry Experiments. J. University Press. 2008, Revised Ed.

Course Code:	Code: CH1 107	
Course Name:	MDS-1: Biology for Chemists	
L-T-P-C	2-0-0-2	
U	nit I	
Syllabus		Hours
Basics of living organisms and five kingdom classification, Introduction and classification of organisms by cell structure (prokaryote and eukaryote), Cell wall: Structure and function, cell Membrane and its functions, nucleus: Structure and function, chromosomes: structure and function.		15
Uı	nit II	
Syllabu	S	Hours
Mitochondria: Structure, function, and biogenesis, Chloroplasts: Structure-function, and biogenesis, Endoplasmic reticulum: Structure and function, Golgi complex: Structure and functions, Lysosomes: Structure and functions, Ribosomes: Structure and functions, Cytoskeleton and cell motility, Cell cycle and cell division.		15

- 1. G. Karp. Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. Inc. 2010, 6th Ed.
- 2. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology. Lippincott Williams and Wilkins, Philadelphia. 2006. 8th Ed.
- 3. G. M. Cooper, and R. E. Hausman. The Cell: A Molecular Approach. Sinauer Associates Inc. 2009, 5th Ed.
- 4. W. M. Becker, L. J. Kleinsmith, J. Hardin. and G. P. Bertoni. The World of the Cell. Pearson Benjamin Cummings Publishing, San Francisco. 2009, 7th Ed.

Course Code: CH1 108			
Course Name: MDS-2: Lab-4: Biology for Chemists		y for Chemists	
L-T-P-C	0-0-4-2		
	List of experiments to be conducted		
S. No.	Objectives	Hours	
1.	Principle and operation of a microscope	8	
1.	Gram staining for the characterization of microorganisms	8	
2.	Observation of distinguishing features of prokaryotic and eukaryotic cell	s 8	
3.	Mitosis and the cell cycle in onion root-tip cells	8	
4. Blood smear preparation and staining (horizontal staining procedure)		8	
5.	Staining of cell organelle (mitochondria)	8	
6.	Permanent slide preparation	8	
7.	7. Identification of barr body by Buccal smear		
List of virtual experiments			
1. Cell Counting and viability			
2. Fluorescent In Situ Hybridization (FISH) Assay			

- 1. G. Karp. Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. Inc. 2010, 6th Ed.
- 2. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology. Lippincott Williams and Wilkins, Philadelphia. 2006, 8th Ed.
- 3. G. M. Cooper, and R. E. Hausman. The Cell: A Molecular Approach. Sinauer Associates Inc. 2009, 5th Ed.
- 4. W. M. Becker, L. J. Kleinsmith, J. Hardin. and G. P. Bertoni. The World of the Cell. Pearson. 2009. 7th Ed.

Course Code:	urse Code: CH1 109	
Course Name:	AEC-1: English Language-1	
L-T-P-C		
Uı	nit I	
Syllabus	S	Hours
Communication Skills: Importance of communication skills, communication cycle, types, flows, barriers, nonverbal communication		15
Listening skills: Types of listening, barriers to effective lis	stening, tips to improve listening skills	
Ur	nit II	
Syllabus		Hours
Grammar: Articles, prepositions, tenses, concord, adjective Speaking Skills: Impromptu, short situational dialogues/of Reading Skills: Difference between skimming & scanning the meanings of words.	conversation, short speeches, presentations	15

Textbooks

- 1. Dr. Sanjay Kumar and Dr. Pushp Lata. Communication Skills. Oxford University Press. 2018, 1st Ed.
- 2. Meenakshi Raman and Sangita Sharma. Technical Communication; Principles and Practice. Oxford University Press. 2015, 3rd Ed.

Reference books

- 1. M Ashraf Rizvi. Effective Technical Communication. SIA Publishers. 2022, Latest Ed.
- 2. Vitthal Patel and Unnat Patel. Text Book of Communication Skills. Ria Publishing House. 2013.
- 3. Wren and Martin High. School English Grammar. S. Chand & Company Pvt. Ltd. 2022. 1st Ed.
- 4. Asha Kaul. Communication Skills. Tata McGraw Hill. 2007, 2nd Ed.

Note: Tutorials via Language Lab sessions will be based on the above course.

Course Code:	CH1 110	
Course Name:	SEC-1: Computer Technology & IT Skills for Chemists	
L-T-P-C	1-0-2-2	
U	nit I	
Syllabus		Hours
Introduction to Computers		7
Computer system: characteristics and capabilities. Computer Hardware and Software: Block Diagram of a		
Computer, Data Processing System, Storing Data, Proc	essing Data. Types of Computers, Generation of	
Computers.		
Number systems: Decimal Number system, Binary number system, Octal & Decimal Number number		
system.		
Unit II		
Syllabu	S	Hours

Computer	Computer Peripherals & amp; Basic Components & amp; Storage Introduction to Input Devices:	
Categorizin	ng input hardware, keyboard, direct entry — card readers, scanning devices — OMR, character	
readers, th	umb scanner, MICR, smart cards, voice input devices, pointing devices	
Central pro	ocessing unit: the microprocessor, control unit, buses, main memory, main memory (RAM) for	
microcomp	outers, Read Only Memory (ROM).	
Storage De	vices: Storage fundamentals, primary and secondary storage, hard disks, disk cartridges, optical	
disks, CD R	disks, CD ROM.	
List of experiments to be conducted		
S. No.		Hours
1.	Introduction to DOS	6
2.	Introduction to Windows	6
3.	Introduction to Microsoft Office	6
4.	Introduction to Microsoft Excel and Spreadsheet	6
5.	Applications of computer knowledge in Chemistry	6

- 1. P. K. Sinha. Computer Fundamentals. BPB Publications. 2004. 6th Ed.
- 2. V. Rajaraman. Introduction to Information Technology. PHI. 2013. 2nd Ed.
- 3. Suresh K Basandra. Computers Today. Galgotia Publications. 1995.
- 4. Peter Norton. Computing Fundamentals. McGraw Hill-Osborne. 2005, 6th Ed.
- 5. S. Jain. Microsoft Office 2007 Training Guide. BPB Publications. 2010.

Course Code:	CH1 111	
Course Name:	IKS-1: Traditional Yoga and its Modernization for	
	Health Benefits	
L-T-P-C	1-0-2-2	
Un	it I	
Syllabus		Hours
Different terminologies and meanings of Yoga, types of yoga, illusions of yoga, benefits of yoga.		15
Details about Ashtanga Yoga, and its types. Understanding of complementary asanas with examples.		
Pranayama, types and its forms, benefits of pranayama.		
Understanding of pratyahar and examples.		
Un	it II	
Syllabus		Hours
Practicing Suryanamaskar, Padmasana, Gomukhasan, D	hanurasan, Tadasan, Padahastasan, Bhadrasan,	15
Shavasan, Utthanpadasan, Purnatitli asan.		

Reading references

1. Swami Vivekananda Complete Book of Yoga Karma Yoga, Bhakti Yoga, Raja Yoga, Jnana Yoga. Arushi Book Enterprises 2023

B.Sc. Chemistry Semester II Detailed syllabus:

CH1 201: Inorganic Chemistry-I (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 201	Course name: Inorganic Chemistry-I

Units	Content	Hours
Ī	Atomic Structure: Bohr's theory, its limitations, and the atomic spectrum of the hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, the significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atoms. Radial and angular distribution curves. Shapes of s , p , d , and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations,	15
	Variation of orbital energy with atomic number.	
II	lonic bond: General characteristics, types of ions, size effects, radius ratio rule, and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle, and its application, Solvation energy. Covalent bond: Lewis structure, Valence Bond theory and its limitations, types of hybridization and shapes of inorganic molecules and ions, VSEPR theory to NH ₃ , H ₃ O ⁺ , SF ₄ , ClF ₃ , ICl ₂ -, and H ₂ O. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N ₂ , O ₂ , C ₂ , B ₂ , F ₂ , CO, NO, and their ions; HCl, BeF ₂ , CO ₂ , (the idea of s-p mixing and orbital interaction to be given). Formal charge, multiple bonding (σ and π bond approach), and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability, bond strength bond order and bond energy relations, Fajan's rules and consequences of polarization. Weak Chemical Forces: Hydrogen bonds, van der Waal's interaction.	15

Reading references

Textbooks

1. R L Madan. Chemistry for Degree Students. S. Chand Publications. 2016, 1st Ed.

Reference books

- 1. H. Petrucci Ralph. *General_Chemistry: Principles, Patterns, and Applications*. Saylor Foundation. 2011. 11th Ed. (A free online textbook)
- 2. J. D. Lee. Concise Inorganic Chemistry. Van Nostrand Reinhold Company. 1977, 3rd Ed.
- 3. F. A. Cotton, G. Wilkinson and Paul.L. Gaus. Basic Inorganic Chemistry. Wiley Publishers 2001, 3rd Ed.
- 4. James E. Huheey, Ellen A. Keiter, Richard L. Keiter and Okhil K. Medhi. Inorganic Chemistry: Principles of Structure and Reactivity. Delhi Pearson Education. 2022, 5th Ed.
- 5. Madan, Malik and Tuli. Selected topics in Inorganic Chemistry. S. Chand Publications New Delhi. 2010 Revised Ed.
- 6. B. R. Puri, L. R. Sharma and K. C. Kalia. Principles of Inorganic Chemistry. Vishal Publications. 1996.

CH1 202: Physical Chemistry-I (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 202	Course name: Physical Chemistry-I

Units	Content	Hours
I	Gaseous State: Kinetic theory of gases, derivation of Boyle's law, Charles law, Avogadro's law	15
	from Kinetic theory, Maxwell distribution and its use in evaluating molecular velocities (average,	
	root mean square and most probable) and average kinetic energy, law of equipartition of energy,	
	degrees of freedom and molecular basis of heat capacities.	
	Behavior of real gases: Deviations from ideal gas behavior, compressibility factor, Z, and its	
	variation with pressure for different gases. Causes of deviation from ideal behavior. van der	
	Waals equation of state, its derivation, and application in explaining real gas behavior, virial	
	equation of state; van der Waals equation expressed in virial form and calculation of Boyle	
	temperature. Isotherms of real gases and their comparison with van der Waals isotherms,	
	continuity of states, critical state, the relation between critical constants and van der Waals	
	constants, and the law of corresponding states.	
II		15
	crystal, space lattice and unit cell of a crystal, different types of unit cells, structures of sodium	
	chloride, cesium chloride, zinc blende, packing of crystals, radius ratio rules, Miller indices,	
	Bragg's law.	
	Liquid State: Intermolecular forces in liquid, vapor pressure, boiling point, surface tension,	
	surface energy, capillary action, and coefficient of viscosity of liquid. Effect of addition of various	
	solutes on surface tension and viscosity. Explanation of cleansing action of detergents.	
	Temperature variation of viscosity of liquids, refractive index, and Snell's law.	

Reading references

Textbooks

- 1. Dr. R. L. Madan. Chemistry for Degree Students. S. Chand Publications New Delhi. 2022, 1st Ed.
- 2. B. R. Puri, Madan S. Pathania, L. R. Sharma. Principles of Physical Chemistry. Vishal Publishing. 2011.
- 3. R. Gurdeep. Advanced Physical Chemistry. Krishna Prakashan. 2018, 4th Ed.
- 4. B. R. Puri, L. R. Sharma. Principles of Physical Chemistry. Vishal Publishing. 2018, 1st Ed.

Reference books

- 1. P. L. Soni. Textbook of Physical Chemistry. P. L. Sultan Chand New Delhi. 2016.
- 2. C. Kittel. Introduction to Solid State Physics. John Wiley & Sons. 2018, 8th Ed.
- 3. Prutton and Marron. Principles of physical chemistry. 2017, 4th Ed.
- 4. Puri and Sharma. Text Book of Physical Chemistry. Vishal Publishing Co. 2020. 1st Ed.
- 5. K. L. Kapoor. Text Book of Physical Chemistry. McGraw Hill. 2020, 4th Ed.

CH1 203: Inorganic Chemistry-I Laboratory (L-T-P-C: 0-0-4-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 203	Course name: Inorganic Chemistry-I Laboratory

S. No.	Objectives	Hours
1.	Making models for different orbitals with playdough and ball and stick models	4
2.	Demonstration of atomic orbitals using virtual labs (https://www.golabz.eu/lab/building-atomic-orbitals)	4
3.	Analysis and identification of copper chloride, potassium iodide, calcium chloride, strontium chloride, lithium chloride, barium chloride, and sodium chloride by flame test. (Practice identification of unknown samples by flame test, explain the color with electronic configuration).	6
4.	Determination of comparative strength of ionic and covalent bonds using a conductometer (https://www.slideshare.net/Qacey/investigate-the-properties-of-ionic-bond-and-covalent-bond-through-an-experiment)	6
5.	Practical demonstration type of bonding using solubility, melting point, and conductivity. (https://www.pasco.com/resources/video/3zJksoLtThA)	4
6.	Qualitative analysis of two- and three-ionic mixture using H_2S of mixtures of following ions: NH_4 + , Pb^2 +, Ag^+ , Bi^3 +, Cu^2 +, Cd^2 +, Sn^2 +, Fe^3 +, Al^3 +, Co^2 +, Cr^3 +, Ni^2 +, Mn^2 +, Zn^2 +, Ba^2 +, Sr^2 +, Ca^2 +, K^+ Anions: CO_3^2 -, S^2 -, SO_4^2 -, $S_2O_3^2$ -, NO_3 -, CH_3COO -, Cl -, Br -, I -, NO_3 -, SO_4^2 -, PO_4^3 -, BO_3^3 -, $C_2O_4^2$ -, FC_3 -, C_3 -,	6

- 1. Orient Longman. Vogel's Textbook of Quantitative Chemical Analysis. Longman scientific & technical. 1989, 5th Ed.
- 2. Orient Longman. Vogel's Textbook of Macro and Semimicro Qualitative Inorganic Analysis. Orient Longman. 1982, 5th Ed.
- 3. Mala Nath. Inorganic Chemistry: A Laboratory Manual Hardcover. Narosa Publishing House Pvt. Ltd. 2016.

CH1 204: Physical Chemistry - I Laboratory (L-T-P-C: 0-0-4-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 204	Course name: Physical Chemistry - I Laboratory

S. No.	Objective	Hours
1.	Demonstration of Kinetic Theory of Gas at different temperatures.	4
	(https://sciencing.com/how-8211482-convert-atm-pressure-celsius.html)	
2.	Comparative analysis of physical properties of different liquids.	4
	(https://www.youtube.com/watch?v=jFWjjUKwCAk)	
3.	Study of different states of matter (using ice cream bags)	4
4.	Determination of surface tension of liquid using various analytical samples	4
5.	Study of the variation of surface tension of a detergent solution with concentration.	4
6.	Estimation of viscosity coefficient of various analytical liquid samples by Ostwald's viscometry.	4
7.	Determination of percent composition of a binary mixture by using surface tension	4
8.	Determination of specific refractivity of a given liquid	2

- 1. B. D. Khosla, V. C. Garg, Adarsh Gulati. Senior Practical Physical Chemistry. R. Chand & Delhi. 2018.
- 2. B. Viswanathan, P. S. Raghavan. Practical Physical Chemistry. Navi Mumbai Viva Books Private Limited. 2017.
- 3. A. K Nad, B. Mahapatra, A. Ghoshal. An Advanced Course in Practical Chemistry Paperback, New Central Book Agency P LTD. 2022.
- 4. B. Vishwanathan and P.S. Raghavan. Practical Physical Chemistry. Viva Books. 2012.

CH1 205: Chemistry of Materials (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 205	Course name: Chemistry of Materials

Units	Content	Hours
I	Solid State Materials: Basic concept, Lattice energy, size effects, covalent character in ionic	10
	bonds, structures of complex solids, conductivity in ionic solids, and solids held together by	
	different interactions.	
	Amorphous and Porous Materials: Crystalline vs. amorphous solids, glass formation,	
	structural models of amorphous materials, evolution and development of porous materials, the	
	chemistry of microporous materials, mesoporous materials, zeolite and zeolite-like materials,	
	polymers and carbon materials in zeolites.	
II	Polymeric Materials: Different schemes of classification of polymers, polymer nomenclature,	20
	molecular forces, chemical bonding in polymers, and texture of polymers. Synthesis,	
	characterization techniques, properties, and applications of any well-known polymer.	
	Conducting polymers, porous polymers.	
	Dielectric Materials: Dielectric constant and polarizability, insulating materials, ferroelectrics,	
	piezoelectrics, measurement of dielectric properties. Representative examples of specific	
	dielectric materials, preparation, characterization techniques, basic properties, and	
	applications.	
	Silicates: Glassy state and its properties, classification (silicate and nonsilicate glasses).	
	Composition and properties of the following types of glasses: Soda lime glass, lead glass,	
	armored glass, safety glass, borosilicate glass, fluorosilicate, colored glass, and photosensitive	
	glass. Nanomaterials: Properties of nanomaterials, role of size and shape, chemical and	
	biological methods for synthesis, basic characterization techniques.	

Reading references

Textbooks

- 1. *General_Chemistry: Principles, Patterns, and Applications.* Saylor Foundation, 2011.
- 2. A. R. West. Solid State Chemistry and its applications. Wiley. 2014, 2nd Ed.
- 3. J. Shackelford. *Introduction to Materials Science for Engineers*. Pearson. 2004, 6th Ed.
- 4. B. D. Cullity and S. R. Stock. *Elements of X-Ray Diffraction*. Pearson. 2001, 3rd Ed.
- 5. B. Averill and P. Eldredge. *Chemistry: Principles, Patterns, and Applications*. Pearson. 2007.

Reference books

- 1. A.K. Cheetham and P. Day, Solid State Chemistry: 1. Techniques and 2. Applications
- 2. P.A. Cox, The electronic structure and chemistry of solids
- 3. Klabunde, K. J., Ed. *Nanoscale Materials in Chemistry*, Wiley Interscience (2001)
- 4. N.N. Greenwood, Ionic crystal, lattice defect and non-stoichiometry
- 5. C.N.R. Rao and J. Gopalakrishnan, New directions in solid state chemistry

Web reference

https://ocw.mit.edu/courses/3-091sc-introduction-to-solid-state-chemistry-fall-2010/pages/syllabus/

19

CH1 206: Chemistry of Materials Laboratory (L-T-P-C: 0-0-4-2)

Program: B. Sc. Chemistry	Semester: II	
Course code: CH1 206	Course name: Chemistry of Materials Laboratory	

S. No.	Objectives	Hours
1.	Analysis of the crystal structure of a given sample	4
2.	Identification and analysis of crystal imperfections in a given sample	4
3.	Observation and analysis of the thermosetting of plastic	4
4.	Synthesis and characterization of nanoparticles by sol-gel method	4
5.	Analysis of the properties of various types of plastics	4
6.	Preparation and characterization of CNTs	4
7.	Preparation and characterization of metallic nanoparticles	4
8.	Preparation of porous materials	2

- 1. A.K. Cheetham and P. Day, Solid State Chemistry: 1. Techniques and 2. Applications
- 2. P.A. Cox, The Electronic Structure and Chemistry of Solids
- 3. Klabunde, K. J., Ed. *Nanoscale Materials in Chemistry*, Wiley Interscience (2001)
- 4. N.N. Greenwood, Ionic Crystal, Lattice Defect and Non-Stoichiometry
- 5. C.N.R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry

CH1 207: Physics of Semiconductor Devices (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II	
Course code: CH1 207	Course name: Physics of Semiconductor Devices	

Units	Content	Hours
I	Band Theory of Solids: Introduction, Metals, Insulators and Semiconductors, Energy band gap,	15
	Fermi Level and Fermi energy, Types of magnetic material, Superconductivity, Properties of	
	superconductors, Types of superconductors (Type I and Type II), London's Penetration depth,	
	Applications of Superconductors.	
II	PN Junction diode, FB and RB condition for PN junction and IV characteristics, LED, Half wave-	15
	full wave rectifier, Photodiode, Varactor Diode, Filter circuits: L, C and Π type filters, Transistor,	
	IV characteristics of CE mode, Binary-octal-hex decimal number system and mutual	
	conversions, Illustrative examples.	

Reading references

Textbooks

- 1. R. K. Puri and V. K. Babbar. Solid State Physics. S. Chand & Co. Ltd. 2010.
- 2. V. K. Mehta. Principles of Electronics. S. Chand & Co. Ltd. 2014, 7th Ed.
- 3. A. Bieser. Concepts of Modern Physics. Tata McGraw-Hill. 2002, 6th Ed.

Reference books

- 1. R. K. Hair and S. L. Gupta. Engineering Physics. Dhanpat Rai. 2012.
- 2. Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons. 2018, 8th Ed.
- 3. S. M. Sze and Kwok K. Ng. Physics of Semiconductor Devices. Wiley. 1996.
- 4. P. Bhattacharya. Semiconductor Opto-Electronic Devices. Prentice Hall. 1996. 2nd Ed.
- 5. M. K. Achuthan and K. N. Bhat. Fundamentals of Semiconductor Devices. McGraw Hill Education. 2007. 1st Ed.
- 6. J. Allison. Electronic Engineering Materials and Devices. McGraw Hill Education. 1990.

CH1 208: Physics of Semiconductor Devices Laboratory (L-T-P-C: 0-0-4-2)

Program: B. Sc. Chemistry	Semester: II	
Course code: CH1 208	Course name: Physics of Semiconductor Devices Laboratory	

S. No.	Objectives	Hours
1.	Determination of lengths of different objects using vernier caliper and screw gauge.	4
2.	Verification of the Truth Table of Logic Gates.	4
3.	Verification of the functionality of the PN junction diode in forward bias and reverse bias.	4
4.	Analysis of the charging & discharging of a given capacitor.	
5.	Analysis of the frequency response characteristics of a series and parallel resonance circuits	
6.	Construction of a half-wave and full-wave rectifier circuit and analysis of its output.	
7.	Determination of the Hall voltage developed across the sample material and the Hall coefficient	
	of the sample material.	
8.	Determination of the provided high resistance by the substitution method	
9.	Evaluation of frequency response of a single pnp transistor using the common emitter	2
	transistor amplifier	

- 1. R. K. Puri and V. K. Babbar. Solid State Physics. S. Chand & Co. Ltd. 2010.
- 2. V. K. Mehta. Principles of Electronics. S. Chand & Co. Ltd. 2014, 7th Ed.
- 3. https://www.amrita.edu/course/physics-semiconductor-devices/

CH1 209: English Language-2 (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 209	Course name: English Language-2

Units	Content	Hours
I	Communication Skills, Speaking & Grammar Communication & Speaking Skills Oral Communication: 6 C's of Communication, conversation in pairs with the help of Cue-cards and effective presentation strategy, P's of presentation preparing outline of the presentation. Explaining their ideas and feelings in simple English. Situations will be drawn from their everyday experiences, group discussion dynamics, and brainstormingon current news affairs. Advance Grammar and Vocabulary Voice –Active/Passive, Use of Adjective and Adverb, Difference between Simple, Compound and Complex sentences, confusables, affixes, idioms, and one-word substitutes.	
II	Reading Skills & Writing Skills Reading Skills Reading comprehension of general passages, Reading Technical passages, Reading General passages, Reading cases/cases and advertisements from newspaper/magazines. Writing Skills Defining report, the purpose of report writing & its significance, explaining various characteristics, types, and elements of report writing Discussing the difference between reference and bibliography, Explaining the difference between Resume and Bio-data, preparing resume, Explaining Précis writing and its significance and practice, Preparing Advertisement	15

- 1. Dr. Sanjay Kumar and Dr. PushpLata. Communication Skills, A Workbook. Oxford University Press. 2018, 1st Ed.
- 2. Meenakshi Raman and Sangeeta Sharma. Technical Communication; Principles and Practice. Oxford University Press. 2015, 3rd Ed.
- 3. R. C. Sharma and Krishna Mohan. Business Correspondence and Report writing. Tata Mcgraw Hill. 2015, 8th
- 4. M Ashraf Rizvi. Effective Technical Communication. SIA Publishers. 2022, Latest Ed.

CH1 210: Techniques of Chemical Analysis (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II	
Course code: CH1 210	Course name: Techniques of Chemical Analysis	

Units	Content	Hours
I	Chromatographic Techniques: Principles of chromatographic separation, Rf factor, paper	
	and thin layer chromatography, solvent system, eluents	
II	Chemical Conductivity: Types of solutions, electrolysis and electrolytes, conductance in	
	electrolytic solutions, specific and molar conductivity variations of conductivity with	
	concentration	

	Experiments to be performed						
S. No.	Objectives	Hours					
1.	Chromatographic Techniques: Separation of two or more components by Paper	6					
	Chromatography						
2.	Separation of two or more components by Thin Layer Chromatography	6					
3.	Comparison of Rf value in different Solvent System	4					
4.	Chemical Conductivity: Measurement of chemical conductivity	6					
5.	Determination of pH by pH meter	4					
6.	Comparison of conductivity of different electrolytes	4					

Reading references

1. A Handbook of Chromatography by Anna P. G. Nikalje, Scholar's Press VerlagOmniscriptam, Deutschland, Germany. ISBN: 978-3-330-65032-9.

CH1 211: Health and Nutrition (L-T-P-C: 2-0-0-2)

Program: B. Sc. Chemistry	Semester: II
Course code: CH1 211	Course name: Health and Nutrition

Units	Content	Hours
ī	Food and Nutrition: The basics of plant and animal foods, their types, structure and	15
1	composition, and nutritional value. Balance diet, Calorificvalues of different food items.	
	Cereals and MilletsPulses	
	Fats & oils	
	Fruits and vegetables milk and milk products	
II	Food Borne Diseases: Types and control measures,	15
	Food Infection and Intoxication- Bacteria and Non-bacteria,	
	Probiotics-Nutritional and therapeutic aspects, Therapeutic values of fermented foods	
	Diseases related to food, vitamins and mineral deficiencies	

- B. Srilakshmi., (2018). Food Science. K. R., New Age International Pvt.Ltd. $7^{\hbox{th}}$ Edition. L. H. Meyer., (2006). Food Chemistry. CBS Publishers and Distributors,New Edition. 1.
- 2.
- B. Poornima., (2012). Fundamentals of Food Science, Technology and Processing and 3. Preservation. Centrum Press.

B.Sc. Chemistry Semester III Detailed syllabus with Course Learning Outcomes

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 101	Course Name: Organic Chemistry -II

Logt	Practical	Credits	Total		Evaluation	on Scheme	
Lect.	(Hours)	Credits	Hours	Component	Exam	Max. Marks	Pass (%)
2	-	2	30	Lecture	CCE, ESE	50	40

Course Description: This course deals with understanding the chemistry of oxygenated hydrocarbon and carbonyl compounds. It covers preparation, physical and chemical properties, and reactivity of oxygenated hydrocarbon and carbonyl compounds. This course also explains the reaction mechanism of related name reactions.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Remember the related name reaction of alcohols and carbonyl compounds

CLO2: Understand the mechanism name reactions related to carbonyl compounds

CLO3: Apply the knowledge of name reactions of carbonyl compounds

CLO4: Explain the reaction mechanism of alcohols and carbonyl compounds

Detailed Syllabus

	Detailed Syllabus	
Units	Content	Hours
I	Chemistry of oxygenated Hydrocarbons: Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt Blanc Reduction; Oxidation of diols by periodic acid and lead tetraacetate, Pinacol Pinacolone rearrangement; Phenols: Preparation and properties; Acidity and factors affecting it, Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism. Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH4.	15
II	Chemistry of Carbonyl Compounds: Structure, reactivity, preparation and properties; Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Mechanisms of Benzoin condensation, Knoevenagel condensation, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α - substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH ₄ , NaBH ₄) Addition reactions of α , β - unsaturated carbonyl compounds: Michael addition.	15

Reading references

- 1. S. M. Mukherji and S.P. Sing. Mechanism and Structure in Organic Chemistry. New Age Publishers. 2017.
- 2. Morrison Boyd and Bhattacharjee. Organic Chemistry. Pearson Education India. 2010, 7th Ed.
- 3. I. L. Finar. Organic Chemistry (Volume I), Dorling Kindersley (India) Pvt. Ltd. Pearson Education. 1963, 4th Ed.
- 4. V. K Ahluwalia, P. Bhagat, R. Aggarwal, R. Chandra. Intermediate for Organic Synthesis. I. K. International. 2005.

School of Science

- 5. T. W. G. Solomons, C. B. Fryhle, S. A. Snyder. Organic Chemistry. Wiley. 2016, 12th Ed.
- 6. R. Chandra, S. Singh, A. Singh. Organic Reactions and their Nomenclature. Arcler Education Inc. 2019.
- 7. Bhupinder Mehta and Manju Mehta. Organic Chemistry. PHI Learning Private Limited. 2015, 2nd Ed.

Program: B. Sc. Chemistry	Semester: III
Course Code: CH2 102	Course name: Inorganic Chemistry-II

Logt	Practical	Credits	Total Hours		Evaluati	on Scheme	
Lect.	(Hours)	Credits	10tal flours	Component	Exam	Max. Marks	Pass (%)
2		2	30	Lecture	CCE, ESE	50	40

Course Description: This course deals with understanding different chemical bonding in a molecule. This course also explains polarity, the deformation of ions, and the consequences of deformation. This course also delivers the idea about molecular orbital theory (MOT) of some small molecules and weak chemical forces including H-bonding.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Define different bonding patterns in a molecule.

CLO2: Predict the geometry of any molecule using VSEPR theory.

CLO3: Apply the concept of Fazan's rule, Born-Haber Cycle, Born-Lande equation.

CLO4: Analyze different weak intermolecular forces.

Detailed Syllabus

Units	Content	Hours
I	Chemical Bonding : Lewis structure, Resonance and resonance energy, Formal charge, multiple bonding (σ and π bond approach), and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability, Fajan's rules and consequences of polarization, bond strength bond order and bond energy relations, Hydrogen bond, intramolecular hydrogen bond and intermolecular hydrogen bond, Hybridization of orbitals, Valence Bond theory and its limitations, types of hybridization and shapes of inorganic molecules and ions, VSEPR theory to NH ₃ , H ₃ O+, SF ₄ , ClF ₃ , ICl ₂ -, and H ₂ O. Bent's rule, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N ₂ , O ₂ , C ₂ , B ₂ , F ₂ , CO, NO, and their ions; HCl, BeF ₂ , CO ₂ .	10
II	Ionic Bond : General characteristics of ionic compounds, melting point, boiling point, hardness, solubility, conductance, radius ratio rule, coordination number, limitation of radius-ratio rule, lattice energy, Born-Lande equation for lattice energy, comparison between lattice energy and hydration energy, Born-Haber cycle, metallic bond, Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference. Metallic Bond.	10
III	Non-bonding interaction: Van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Hydrogen bond, intramolecular and intermolecular hydrogen bond, Application of hydrogen bonding, factors determining Van der Waal's force, Repulsive forces, Hydrogen bonding: types, applications, Effects of chemical forces	10

- 1. J. D. Lee. Concise Inorganic Chemistry. Blackwell Science. 2008, 5th Ed.
- 2. R. P. Sarkar. General and Inorganic Chemistry. vol-I&II. New Central Book Agency. 2012.
- 3. F. A. Cotton, G. Wilkinson, Paul. L. Gaus. Basic Inorganic Chemistry. Wiley. 2007, 3rd Ed.
- 4. Dr. R. L. Madan. Chemistry for degree students. S Chand and Company Limited. 2010, 2nd Ed.

Program: B. Sc. Chemistry	Semester: III
Course Code: CH2 103	Course Name: Physical Chemistry-II

Loct	Practical	Credits	Total	Evaluation Scheme			
Lect.	(Hours)		Hours	Component	Exam	Max. Marks	Pass (%)
2	-	2	30	Lecture	CCE, ESE	50	40

Course Description: This course is designed to fully understand the major concepts of Chemical Thermodynamics. It covers principles of classical thermodynamics. Develops understanding of mass, energy, heat, work, efficiency, entropy, enthalpy, Gibbs free energy, ideal and real thermodynamic cycles and processes. The course also covers the first, second, third, and zeroth laws of thermodynamics and concepts in thermochemistry. More emphasis will be given to various free energy functions.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Recognize and use the thermodynamic parameters correctly.

CLO2: Understand the first, second, third, and zeroth laws of thermodynamics.

CLO3: Apply the knowledge of chemical thermodynamics to interpret the chemical reactions.

CLO4: Correlate thermodynamics to solve practical problems in physical and chemical systems.

Detailed Syllabus

Units	Content	Hours					
I	Intensive and extensive variables; state and path functions; isolated, closed, and open systems;	15					
	zeroth law of thermodynamics.						
	First law: Concept of heat, work, internal energy, and statement of first law; enthalpy, <i>H</i> , the relation						
	between heat capacities, calculations of Q, W, U, and H for reversible, irreversible, and free expansion						
	of gases (ideal and van der Waals) under isothermal and adiabatic conditions.						
	Thermochemistry: Heats of reactions: standard states; enthalpy of formation of molecules and ions						
	and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation						
	energy, and resonance energy from thermochemical data, the effect of temperature (Kirchhoff's						
	equations) and pressure on the enthalpy of reactions. Adiabatic flame temperature, explosion						
	temperature.						
II	Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law	15					
	of thermodynamics; molecular and statistical interpretation of entropy. Calculation of entropy						
	change for reversible and irreversible processes.						
	Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of						
	molecules.						
	Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy						
	change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic						
	parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic						
	equation of state. Partial molar quantities, dependence of thermodynamic parameters on						
	composition; Gibbs-Duhem equation, chemical potential of ideal mixtures, change in						
	thermodynamic functions in mixing of ideal gases						

Reading references

Textbooks

1. G. W. Castellan Physical Chemistry by Narosa Publication 2004 3rd Edition

- 2. P. C. Rakshit Physical Chemistry Levant Books 2020 7th Edition
- 3. R. L. Madan Chemistry for Degree Students S. Chand Publications, 2022 1st Edition.
- 4. Advanced Physical Chemistry, Raj, Gurdeep, Meerut: Krishna Prakashan, 2018 4th Edition
- 5. Principles of Physical Chemistry, Puri, B. R., Sharma, L. R., Vishal Publishing CO. Delhi: 2016 4th Edition

Reference books

- 6. Prutton and Maron. Principles of Physical Chemistry Oxford & IBH Publishing Ltd., 2017
- 7. P. K. Nag Basics and Applied Thermodynamics Tata Mcgraw-Hill 2006, 8th Edition

Program: B. Sc. Chemistry	Semester: III
Course Code: CH2 104	Course Name: Organic Chemistry-II Laboratory

Loct	Practical (Hours)	Cradita	Total Houng	Evaluation Scheme			
Lect.	Practical (nours)	Credits	Total nours	Component		Pass (%)	
	4/week	2	60	Lab	CCE, ESE	50	40

Course Description: This is a practical course in organic chemistry. This covers learning and analyzing the various functional groups of organic compounds. This course also deals with the determination of the melting points, and solubility of given organic compounds. This course also deals with the synthesis of organic compounds such as *m*-nitroaniline, and acetanilide.

Course Learning Outcomes: At the end of this course students will be able to Find the suitable test for the detection of different functional group Learn the acetylation, oxidation, and reduction of organic molecules Learn the preparation of derivatives

Detailed Practical

S. No.	Name of the Experiment	Hours
1	Analyzing the solubility of a given compound	5
2	Determination of the melting point of a given solid sample	5
3	Functional group analysis: characteristic tests for aromatic amine group	5
4	Functional group analysis: characteristic tests for ketone group	5
5	Functional group analysis: characteristic tests for phenolic hydroxy group	5
6	Functional group analysis: characteristic tests for carboxylic acid group	5
7	Acetylation of one of the following compounds: amines (aniline, o-, m-, p- toluidine and o-	10
	, m -, p -anisidine) and phenols (β -naphthol, vanillin, salicylic acid) by any one method:	
	i. Using the conventional method.	
	ii. Using a green approach	
8	Oxidation of ethanol/ isopropanol (Iodoform reaction	10
9	Selective reduction of meta dinitrobenzene to m-nitroaniline	10

- 1. B. S. Furniss. Vogel Textbook of Practical Organic Chemistry. Pearson Education. 2011,
- 2. A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hannaford and Smith, P. W. G. Textbook of Practical 3. Organic Chemistry. Prentice-Hall. 1996, 5th Ed.
- 4. A. K. Nad and B Mahapatra. An Advanced Course in Practical Chemistry. New Central Book Agency. 2022, 3rd Ed.
- 5. V. K Ahluwalia and Sunita Dhingra. Practical Organic Chemistry. New Central Book Agency. 2017, 1st Ed.
- 6. N. K. Vishnoi. Advanced Practical Organic Chemistry. Vikas Publication. 2009, 3rd Ed.

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 105	Course name: Inorganic Chemistry-II Laboratory

Loct	Lect. Practical (Hours) Credits	Crodite	Total Hours		Evalua	tion Scheme	
Lect.		Total nouls	Component	Exam	Max. Marks	Pass (%)	
	4/week	2	60	Lab	CCE, ESE	50	40

Course Description: This is a practical course of inorganic chemistry. This covers learning and analyzing the various group I and II. This course also deals preparation and estimation of coordination complexes of metals like Cu and Ni. This course also deals with determination of water of hydration in a given sample.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Identify the suitable reagent for group I and group elements.

CLO2: Understand the preparation and characterization of coordination complexes.

CLO3: Demonstrate the formation of Cu and Ni complexes

CLO4: Analyze the water of hydration in coordination compounds.

Detailed Practical

S. No.	Name of the Experiment	Hours
1.	Analysis and identification of group-I halides (potassium iodide, lithium chloride, and sodium chloride by flame test	5
2.	To analyze and identify the group-II halides (calcium chloride, strontium chloride, barium chloride	5
3.	Preparation of tetramine-copper (II) sulfate Complex and calculation of the yield from the stoichiometric equation.	5
4.	To Prepare hexamine nickel (II) chloride and calculate the yield from the stoichiometric equation	5
5.	To Determine the formula of an unknown hydrated sample	5
6.	To separate the given inorganic mixture using the filtration process	5
	Virtual Experiments	
7.	Determination of comparative strength of ionic and covalent bonds using a conductometer (https://www.slideshare.net/Qacey/investigatethe-properties-of-ionic-bond-and-covalent-bonthroughan-experiment)	10
8.	Practical demonstration type of bonding using solubility, melting point, and conductivity. (https://www.pasco.com/resources/video/3z]ksoLtThA)	10

- 1. Vogel's Textbook of Quantitative Chemical Analysis, 5th Ed., Orient Longman, 1989.
- 2. Vogel's Textbook of Macro and Semimicro Qualitative Inorganic Analysis, 5th Ed, Orient Longman, 1982.
- 3. Inorganic Chemistry: A Laboratory Manual by Mala Nath, 2016

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 106	Course name: Physical Chemistry-II Laboratory

Loct	Practical (Hours)	Cradita	Total Hours	Evaluation Scheme			
Lect.	Practical (nours)	Credits	Total nours	Component Exam	Exam	Max. Marks	Pass (%)
-	4/week	2	60	Lab	CCE, ESE	50	40

Course Description: This course is a practical course in Physical Chemistry. Through this course, the students will get an insight into learning by performing hands-on experiments and practicals. From this course, they can understand and learn basic thermodynamic parameters like work done, enthalpy, entropy change, etc.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Identify the first law of thermodynamics

CLO2: Recognize the second law of thermodynamics

CLO3: Estimate property changes of mixing

CLO4: Evaluate Hess's law

Detailed Syllabus

S. No.	Experiment	Hours
1.	Demonstration of the first law of thermodynamics using simple household systems	6
2.	Determination of heat loss by the reactants in an exothermic reaction by calculating the heat gained by the products of that reaction.	6
3.	Experimental demonstration of the second law of thermodynamics with glow sticks	6
4.	Determination of the integral heats of dilution of H_2SO_4 starting with 10M acid and going down to 5M acid in the order 9M, 8M, 7M, 6M.	6
5.	Determination of heat loss by the reactants in an exothermic reaction by calculating the heat gained by the products of that reaction.	6
6.	Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide using a coffee mug calorimeter	6
7.	Investigation of the solubility of benzoic acid in water and determination of change in enthalpy.	6
8.	Determination of enthalpy of hydration of copper sulphate	6
9.	Experimental determination of ΔH values of two reactions using the technique of constant pressure calorimeter	6

List of virtual experiments

1.	Work done by the system and on the system
2.	Model of a heat engine
3.	Demonstration of adiabatic expansion – cloud in a bottle

- 1. B. D. Kholsa, V. C. Garg, Senior Practical Physical Chemistry Delhi: R. Chand, 2018, 18th Edition
- 2. B. Viswanathan, P. S. Raghavan Practical Physical Chemistry Navi Mumbai Viva Books Private Limited 2017, 1st Edition
- 3. A. K. Nad, B. Mahapatra, A. Ghoshal. An Advanced Course in Practical Chemistry Paperback, l New Central Book Agency P LTD 2012, 3rd Edition
- 4. J. N. Gurtu and Amit Gurtu Advanced Physical Chemistry Experiments Pragati Prakashan 2008,

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 107	Course name: Semiconductor Devices

Logt	ct. Practical (Hours) Credits	Dragtical (Hours)	Cradita	Total Hours		Evaluati	on Scheme	
Lect.		Total nours	Component	Exam	Max. Marks	Passing (%)		
2		2	30	Lecture	CCE, ESE	50	40	

Course Description: In this course, students will learn basics of the lattice vibrations, different theories to understand the physical properties of solids. This course will also be helpful to understand the concepts of semiconductor devices such as diodes and transistors which can help the students to apply the concepts in the real-life problems.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Remember the basic concept of different semiconducting devices.

CLO2: Understand the concept of phonons, diodes and transistors, and related fields.

CLO3: Examine the behavior of physical properties of solid materials.

CLO4: Analyze the concepts of diodes and transistors and apply them to real-life problems.

Detailed Syllabus

	y	
Units	Content	Hours
I	Lattice Vibrations: Elastic and atomic force constant, Brillioun zone, Dispersion relation, Dynamics of a chain of atoms, chain of two types of atoms, optical and acoustic modes, Phonons, Momentum of phonon, interaction of light with ionic crystals, inelastic collision of photon by phonon, Einstein's and Debye's theories of specific heat of solids, lattice heat capacity, density of modes, Debye approximation, examples	15
II	Semiconductor Diodes & Transistors: Drift of Carriers in Electric and Magnetic Fields, Principal and Application of Light Emitting Diode, Photodiode, Varactor Diode, Zener Diode, Tunnel Diode Illustrative examples and related problems. Characteristics of npn and pnp transistor, active and saturation region, common emitter, common base and common collector configuration, input and output characteristics, basics of	15
	field effect transistor (FET) and junction field effect transistor (JFET).	

Reading references

Textbooks

- 1. R. K. Puri and V. K. Babbar. Solid State Physics. S. Chand & Co. Ltd. 2010.
- 2. V. K. Mehta. Principles of Electronics. S. Chand & Co. Ltd. 2014, 7th Ed.
- 3. A. Bieser. Concepts of Modern Physics. Tata McGraw-Hill. 2002, 6th Ed.

Reference books

- 7. Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons. 2018, 8th Ed.
- 8. S. M. Sze and Kwok K. Ng. Physics of Semiconductor Devices. Wiley. 1996.
- 9. P. Bhattacharya. Semiconductor Opto-Electronic Devices. Prentice Hall. 1996. 2nd Ed.
- 10. M. K. Achuthan and K. N. Bhat. Fundamentals of Semiconductor Devices. McGraw Hill Education. 2007. 1st Ed.
- 11. J. Allison. Electronic Engineering Materials and Devices. McGraw Hill Education. 1990.

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 108	Course name: Semiconductor Devices Laboratory

Lect.	Practical (Hours)	Credits	Total Hours	Evaluation Scheme				
				Component	Exam	Max. Marks	Pass (%)	
		4/week	2	60	Lab	CCE, ESE	50	40

Course Description: This is a practical course in physics that deals with the characteristics of different types of semiconductor devices. This course also explains the experimental learning of the semiconductor devices. This course will also help to understand and learn the designing of different electrical circuits.

Course Learning Outcome: At the end of this course students will be able to

CLO1: Record the change in current due to the change in voltage supply.

CLO2: Estimate the I-V characteristics of semiconductor devices such as diodes and transistors.

CLO3: Examine whether the provided semiconductor device is working or not by demonstrating the proper circuits.

CLO4: Design different types of electrical circuits such as in logic gates.

Detailed Syllabus

Deutieu dynabus					
S. No.	Experiments	Hours			
1.	Using Common Emitter Transistor Amplifier plot the Frequency response of a single PNP Transistor.	8			
2.	To design the electrical circuit of different logic gates and verify the truth table for the same.	8			
3.	(a) To determine the Hall voltage developed across the given material.(b) To calculate the Hall coefficient of the same material.	10			
4.	To analyze the half wave and full wave rectifier output using a capacitor in shunt as a filter.	10			
5.	Determine the figure of merit of a given Galvanometer.	8			
6.	To verify Stefan's Law of radiation (The law states that the amount of energy radiated through unit time from the surface of a black body is directly proportional to the fourth power of its absolute temperature).	8			
7.	To determine the given high resistance by the Substitution method.	8			

- 1. V. K. Mehta, Principles of Electronics, S. Chand & D. Ltd., 2007
- 2. Kumar P. R. S., Practical Physics, PHI, 2011
- 3. Harnam Singh and P. S. Hemne, Practical Physics, S. Chand & D. Ltd., 2000.
- 4. S. K. Ghosh, Advanced Practical Physics, NCBA, 2010

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 109	Course name: Soft Skills

Logt	Practical (Hours) Credits		Total House	Evaluation Scheme			
Lect.	Fractical (nours)	Credits	Total nours	Component	Exam	Max. Marks	Passing (%)
2		2	30	Lecture	CCE, ESE	50	40

Course Description: In this course, students will be able to learn basics of the communication skills and SWOT analysis. This course will also be helpful for students in their goal-setting, self-analysis, and creative thinking. This course will also help to understand the corporate etiquette.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Remember the basics of communication skills and self-analysis.

CLO2: Understand the goal-setting and creative thinking.

CLO3: Observe the effective communications and presentation.

CLO4: Analyze the corporate etiquette.

Detailed Syllabus

Units	Content	Hours				
	SWOT Analysis					
	Who am I?	15				
	Factors influencing Self Perception					
I	Self Esteem					
	 Understanding positive and negative attitudes 					
	Goal Setting					
	Types of Goals: Immediate, Short term, Long term					
	Strategies to Achieve Goals					
	Creativity					
II	Out-of-box thinking	15				
	Lateral Thinking					
	Innovative Thinking					
	Corporate Etiquettes					
	E-mail etiquette, Telephone etiquette,					
	Dining etiquette, Office meeting etiquettes, Dress etiquette					

- 1. Jeff Butterfield, Soft Skills for Everyone by. Cengage publications. 2020, 2nd Ed.
- 2. Barun K Mitra. Personality Development and Soft Skills. Oxford University Press India. 2016, 2nd Ed.
- 3. Edward de Bono. Lateral Thinking: Creativity Step by Step. Harper Perennial. 2015, Reissue Ed.

Program: B. Sc. Chemistry	Semester: III
Course code: CH2 110	Course name: Laboratory Operations and Safety Measures

Logt	Practical (Hours)	Credits	Total		Evalua	tion Scheme	
Lect.	Practical (nours)	Credits	Hours	Component	Exam	Max. Marks	Pass
2	-	2	30	Lecture	CCE, ESE	50	20

Course Description: This course deals with understanding of various chemical operations in the laboratory. This course also explains the handling of chemicals and materials with proper guide and regulations. This course also delivers essential safety measures required in chemical laboratories.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Understand the safe working practices in a chemistry laboratory.

CLO2: Handle safely different glass apparatus.

CLO3: Analyze the chemicals and equipment safety in the laboratory.

CLO4: Apply protocols and methods for instruments in the laboratory.

Detailed Syllabus

Units	Content	Hours
I	Laboratory Operations	15
	Understanding of handling and use of common laboratory apparatus, various types of apparatus in	
	labs such as glass apparatus, Plastic Apparatus, Metal Apparatus etc., and Protocol of Cleaning and	
	drying of glassware apparatus.	
	Identification and set up of Apparatus assemblies and operational procedural protocols such as	
	calibration of Volumetric/ Graduated Glassware Apparatus along with description, Knowledge and	
	working protocol for various heating equipment in laboratory: Burners, Hot Plates, Heating Mantles,	
	Muffle Furnace, Stirring apparatus in a laboratory: Use of Magnetic Stirrer and Mechanical Shaker,	
	Heating and Cooling Bath. Various types of Filter Paper, Use of Analytical Balance: Mass and Weight,	
	Use of melting point apparatus. assemblies of apparatus for distillation and refluxing, Assessment of	
	distillation of inflammable solvents. Preparation of Chemical Laboratory Reagents.	
II	Safety Measures	15
	Design a chart exhibiting of Do's and Don'ts instructions in a chemistry laboratory, Classification and	
	labeling of the given set of chemicals, preparation of the indicative MSDS (Material Safety Data	
	Sheet), Design of Common Safety Symbols along with its description.	
	Identify and enlist the Incompatible Chemicals from a given set of chemicals, Describe procedure for	
	the storage, maintenance and handling of compressed gas cylinders, Explore guidelines for the	
	Storage of shelf chemicals and reagents, Carry out a detailed study of the Limits of Exposure of given	
	Chemicals, Classify the Hazard based on storage, handling, and disposal of chemicals, procedural	
	protocols for safe Disposal of Chemicals, Carry out investigations of the data regarding Institute	
	Safety Policies: Safety Audits / Inspections.	

- 1. D. A. Skoog, D. M. West and F. J. Holler. Fundamentals of Analytical Chemistry. Saunders College Publishing. 1991, 2nd Ed.
- 2. J. Mendham. Vogels Textbook of Quantitative Chemical Analysis, Pearson Education. 2002, 6th Ed.
- 3. B. S. Furniss, A. J. Hannaford, Smith, W. G. Peter, A. R. Tatchell, Vogel's Text Book of Practical Organic Chemistry. Longman Scientific and Technical, Longman Group Ltd. 5th Ed. 1989.

Program: B. Sc. Chemistry	Semester: III
Course Code: CH2 111	Course Name: Indian Culture and Civilization

Lect.	Dragtical (House)	Credits	Total Hours		Evaluation	1 Scheme	
Lect.	Fractical (nours)		l (Hours) Credits Total Hours Component Exam	lotal Hours	Exam	Max. Marks	Pass (%)
2	-	2	30	Lecture	CCE, ESE	50	20

Course Description: The course on Indian Culture and Civilization will deliver in-depth knowledge regarding various aspects of Indian culture. The course also intends to understand the development of early civilizations in India. It will introduce the students to various dynasties that ruled over India. It will inspire students to appreciate, the literature, art, and architecture of ancient India.

Course Learning Outcomes: At the end of this course students will be able to

CLO1: Understand Indian culture and history. **CLO2:** Describe Indian heritage and ethnicity.

CLO3: Explain Indian science, art, literature, and architecture.

CLO4: Analyze the underlying unity amidst diversity in all aspects of India's culture.

Detailed Syllabus

Units	Content	Hours
I	Characteristics of Indian culture, importance of Indian culture in one's life, variety in unity, secular	15
	outlook, universalism, Materialism and spiritualism, Ethics of Indians, Indian language, literature	
	(an introduction of Vedic Samhitas and Upnishadas), painting, music, dance, drama, movies, Indian	
	architecture (town planning of Indus valley civilization. Sculpture and Architecture of Indus valley	
	civilization), India's contribution to global world heritage, through its culture civilization and	
	diversity. Religion and Philosophy in Ancient and Medieval India, Religious Reforms in modern	
	India, cultural history of Gujarat during ancient, medieval, and modern ages.	
II	Surveys the rise of civilization and kingdoms on the Indian subcontinent from the first urban centers	15
	of the Indus Valley through the establishment of the Mughal Empire in the 16th century. Uses	
	literary, archeological, linguistic, ethnological, and inscriptional evidence on the diversity of Indic	
	peoples and their complex social, religious, and caste integration into the major states and empires	
	of pre-modern India; considers wider civilizational networks and extensions of the Indian cultural	
	sphere into other parts of Asia; integrates a historical and anthropological perspective on various	
	primary materials.	

- 1. A. L. Basham. The Wonder That Was India. Vol I. Rupa books New Delhi. 2004, 16th Ed.
- 2. Thaper Romila. A History of India Vol I. Penguin India. 2000, 14th Ed.
- 3. D. D. Kosambi. The Culture and Civilization of Ancient India. Vikas Publishing House Pvt Ltd. 1997, 1st Ed.
- 4. D. D. Kosambi. An Introduction to the Study of Indian History. Sangam Books Ltd. 2023.
- 5. R. C. Majumdar. Ancient India. Motilal Banarsidass. 2017, 10th Ed.

B.Sc. Chemistry Semester IV Detailed syllabus

Course Code	CH2 201	
Course Name	Organic Chemistry-III	
L-T-P-C	2-0-0-2	
U	nit I	
Syllabu	S	Hours
Carboxylic Acids and their Derivatives: General method	ds of preparation, physical properties and reactions	15
of monocarboxylic acids, effect of substituents on acidic	strength. Typical reactions of dicarboxylic acids,	
hydroxy acids and unsaturated acids. Preparation and r		
amides; Comparative study of nucleophilic sustitution		
hydrolysis of esters, Claisen condensation, Dieckmann a	and Reformatsky reactions, Hofmann- bromamide	
degradation and Curtius rearrangement.		
Aromaticity of polynuclear hydrocarbons: structure elucidation of naphthalene; Preparation and		
properties of naphthalene, phenanthrene and anthracene.		
Unit II		
Syllabus		Hours
Nitrogen Containing Functional Groups: Preparation as		15
and isonitriles. Amines: Preparation and properties: Effe		
phthalimide synthesis, Carbylamine reaction, Mannic		
Hofmann-elimination reaction; Distinction between 1°, 2		
acid. Diazonium Salts: Preparation and their synthetic ap		
Heterocyclic Compounds : Classification and nomencla		
membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions		
of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine		
(Hantzsch synthesis), Indole(Fischer indole synthesis and		
(Skraup synthesis, Friedlander's synthesis, Knorr quin reaction, Pomeranz-Fritsch reaction).	(Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner- Miller, Pictat-Spengler	

- 1. Morrison Boyd and Bhattacharjee. Organic Chemistry. Pearson Education India. 2010, 7th Ed.
- 2. I. L. Finar. Organic Chemistry (Volume I), Dorling Kindersley (India) Pvt. Ltd. Pearson Education. 1963, 4th Ed.
- 3. I. L. Finar. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. Pearson Education. 2002, 5th Ed.
- 4. R. M. Acheson. Introduction to the Chemistry of Heterocyclic Compounds. John Welly & Sons. 2008, 3rd Ed.
- 5. T. W. Graham Solomons. Organic Chemistry. John Wiley & Sons, Inc. 2017, 12th Ed.
- 6. P. S. Kalsi. Textbook of Organic Chemistry. New Age International (P) Ltd. Pub. 2000, 1st Ed.
- 7. Greeves, Warren, and Wothers Clayden. Organic Chemistry. Oxford University Press. 2014, 2nd Ed.
- 8. J. Singh, S. M. Ali, J. Singh. Natural Product Chemistry. Pragati Parakashan. 2010.

Course Code:	CH2 202	
Course Name:	Inorganic Chemistry-III	
L-T-P-C	2-0-0-2	
Uı	nit I	
Syllabus	5	Hours
Periodicity of Elements: s, p, d, f-block elements, the long form of the periodic table. Detailed discussion of the following properties of the elements, with reference to s & p-block. (a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in the periodic table. (b) Atomic radii (van der Waals) (c) Ionic and crystal radii. (d) Covalent radii (octahedral and tetrahedral) (e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy. (f) Electron gain enthalpy, trends of electron gain enthalpy. (g) Electronegativity, Pauling's/Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, and group electronegativity.		15
	it II	
Syllabus		Hours
Chemistry of s and p Block Elements: Inert pair effect, Relative stability of different oxidation states, diagonal relationship, and anomalous behavior of the first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent, and interstitial. Basic beryllium acetate and nitrate. Study of the following compounds with emphasis on structure, bonding, preparation, properties, and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides, and oxoacids of nitrogen, phosphorus, and chlorine. Peroxo acids of sulfur, interhalogen compounds, polyhalide ions, pseudo halogens, and basic properties of halogens.		15

- 1. R. L. Madan. Chemistry for Degree Students. S. Chand Publications. 2016, 1st Ed.
- 2. R. Sarkar. General and Inorganic Chemistry. New Central Book Agency. 2011, 3rd Ed.
- 3. J. D. lee. Concise Inorganic chemistry. Oxford University Press. 2008, 5th Ed.
- 4. F. A. Cotton, G. Wilkinson, Paul. L. Gaus. Basic Inorganic Chemistry. Wiley. 2007 3rd Ed.
- 5. N. N. Greenwood and A. Earnshaw. Chemistry of the elements. Pergamon Press 1989.

Course Code:	CH2 203	
Course Name:	Physical Chemistry-III	
L-T-P-C	2-0-0-2	
J	Init I	
Syllabus	5	Hours
Ionic equilibrium: Strong, moderate, and weak electron		15
degree of ionization, ionization constant, and ionic prod		
pH scale, common ion effect; dissociation constants of m	ono-, di-and triprotic acids (exact treatment).	
Salt hydrolysis-calculation of hydrolysis constant, deg	ree of hydrolysis, Buffer solutions; Henderson	
equation and its applications; buffer capacity, buffer ran	•	
of sparingly soluble salts – applications of solubility pr	oduct principle. Theory of acid-base indicators;	
selection of indicators and their limitations.		
Chemical equilibrium: Criteria of thermodynamic equilibrium, degree of advancement of reaction,		
chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between		
Gibbs free energy of reaction and reaction quotient. A coupling of exoergic and endoergic reactions.		
Unit II		
Syllabus	5	Hours
Equilibrium constants and their quantitative dependen	ce on temperature, pressure, and concentration.	15
Free energy of mixing and spontaneity; thermodynam	ic derivation of relations between the various	
equilibrium constants K _p , K _c , and K _x . Le Chatelier princip	le.	
Chemical kinetics: Order and molecularity of a reacti	on, rate laws in terms of the advancement of a	
reaction, differential and integrated forms of rate expressions up to second-order reactions, experimental		
methods of the determination of rate laws, kinetics of co		
to first order only): (i) Opposing reactions (ii) parallel re	` ,	
differential rate equations (steady-state approximation		
Temperature dependence of reaction rates; Arrhenius	equation; activation energy. Collision theory of	
reaction rates.		

Textbooks

- 1. R. L. Madan. Chemistry for Degree Students. S. Chand Publications. 2016, 1st Ed.
- 2. B. R. Puri. Principles of Physical Chemistry. Jalandhar Vishal Publishing Co. 2020, 49th Ed.
- 3. G. W. Castellan. Physical Chemistry. Narosa Publication. 3rd Ed.
- 4. Raj, Gurdeep, Meerut Advanced Physical Chemistry, Raj, Gurdeep, Meerut: Krishna Prakashan, 2018 4th Edition
- 5. B. R. Puri. Sharma. Principles of Physical Chemistry, L. R., Vishal Publishing CO. Delhi: 2018, 4th Edition
- 6. Physical Chemistry, Puri, B. R., Sharma, L. R., Vishal Publishing CO. Delhi: 2018.

- 8. P.L. Soni. Textbook of Physical Chemistry. Sultan Chand New Delhi. 2016.
- 9. C. Kittel. Introduction to Solid State Physics. John Wiley & Sons. 2004, 8th Ed.
- 10. Prutton and Marron. Principles of physical chemistry. CBS PUBLISHERS AND DISTRIBUTORS PVT LTD. 2017. 4th Ed.
- 11. Soni and Dharmahara. Text Book of Physical Chemistry. Sultan Chand & Sons. 2011.
- 12. B. R. Puri and L. R. Sharma. Text Book of Physical Chemistry. Vishal Publishing. 2020, 1st Ed.
- 13. K. L. Kapoor. Text Book of Physical Chemistry. Macmillan. 2010, Volume 6.

Course Co	ode: CH2 204	
Course Name: Organic Chemistry-III Laboratory		
L-T-P-C 0-0-4-2		
S. No.	List of Experiments to be Conducted	Hours
1.	Execution of Aldol condensation between acetone and benzaldehyde	6
2.	Execution of Hofmann-bromamide rearrangement for Ph-CO-NH ₂ yielding PhNH ₂	6
3.	Execution of Curtius rearrangement with a practically suitable example	6
4.	Synthesis of Gabriel phthalimide through a practically suitable example	6
5.	Identification of primary amines through Carbylamine test (PhNH ₂ to PhNC)	
6.	Execution of Mannich condensation reaction with benzaldehyde, aniline and acetophenone	
7.	Preparation of benzenediazonium chloride and its application as azodye	
8.	Identification of 1°, 2°, and 3° amines through the Hinsberg Test	
9.	Aromatic Electrophilic Substitution reaction with a practically suitable example	
10.	Preparation of Carbazole (Dibenzopyrrole)	6
	List of virtual experiments	
1.	Acetylation of Salicylic acid	4
2.	Preparation of Tribromoaniline from Aniline	
3.	Preparation of 1-Phenyl-3-methyl-5-pyrazolone	4

- 1. B. S. Furniss. Vogel Textbook of Practical Organic Chemistry. Pearson Education. 2011,
- 2. A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hannaford and Smith, P. W. G. Textbook of Practical 3. Organic Chemistry. Prentice-Hall. 1996, 5th Ed.
- 4. A. K. Nad and B Mahapatra. An Advanced Course in Practical Chemistry. New Central Book Agency. 2022, 3rd Ed.
- 5. V. K Ahluwalia and Sunita Dhingra. Practical Organic Chemistry. New Central Book Agency. 2017, 1st Ed.
- 6. N. K. Vishnoi. Advanced Practical Organic Chemistry. Vikas Publication. 2009, 3rd Ed.

Course Code:		CH2 205	
Course	Course Name: Inorganic Chemistry-II Laboratory		
L-T-P-C		0-0-4-2	
S. No.	List of Experiments	to be Conducted	Hours
1.	To determine the water of crystallization of a give	n salt. BaCl ₂ 2H ₂ O, Mg.SO ₄ 7H ₂ O	8
2.	To determine the Percentage of Purity of a given salt (Na ₂ CO ₃ , NaHCO ₃)		8
3.	To separate a mixture of Ni ²⁺ & Fe ²⁺ by complexation with DMG and extracting the Ni ²⁺ -DMG complex in chloroform, and determine its concentration by spectrophotometry		8
4.	To determine the exchange capacity of cation exchange resins and anion exchange resins.		8
5.	To separate the amino acids from organic acids by ion exchange chromatography.		8
6.	6. To separate metal ions from their binary mixture.		8
	List of virtual	experiments	
1.	Describe the difference between coefficients and subscripts in a chemical equation.		4
2.	Describe ambidentate ligand and chelating ligand		4
3.	Practical demonstration of different types of chro	matographic separation.	4

- 1. Vogel's Textbook of Quantitative Chemical Analysis, 5th Edn, Orient Longman, 1989.
- 2. Vogel's Textbook of Macro and Semimicro Qualitative Inorganic Analysis, 5th Edn, Orient Longman, 1982.
- 3. Inorganic Chemistry: A Laboratory Manual Hardcover Import, 30 June 2016 by Mala Nath

Course Code: CH2 206		H2 206	
Course	Name: P	hysical Chemistry-III Laboratory	
L-T-P-C	L-T-P-C 0-0-4-2		
S. No.	List of experiments to be con	nducted Hours	
1.	Preparation of buffer solutions of different pH	4	
	a. Sodium acetate-acetic acid		
	b. Ammonium chloride-ammonium hydroxid	e	
2.	pH-metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.		
3.	Determination of dissociation constant of a weak acid.		
4.	Study of the shift in equilibrium in the reaction of ferric and thiocyanate ions.		
5.	Validation of the Le Chatelier Principle using simple laboratory methods 8		
6.	Determination of order by initial rate method: Iodide-pers	sulphate reaction 8	
7.	7. Compare the strengths of HCl and H_2SO_4 by studying the kinetics of hydrolysis of		
	methylacetate.		
8.	8. Determine the rate constant for the inversion of sucrose using a polarimeter		
	List of virtual experim	ents	
1.	1. pKa determination by half-neutralization method (https://www.youtube.com/watch?v=IjMHbN3BdBs)		

- 1. B. D. Khosla, V. C. Garg, Adarsh Gulati. Senior Practical Physical Chemistry. R. Chand. 2018.
- 2. B. Viswanathan and P. S. Raghavan. Practical Physical Chemistry. Navi Mumbai Viva Books Private Limited. 2017.
- 3. A. K. Nad, B. Mahapatra, A. Ghoshal. An Advanced Course in Practical Chemistry. Paperback, New Central Book Agency P LTD. 2022.
- 4. B. Vishwanathan, P. S. Raghavan. Practical Physical Chemistry. Viva Publisher. 2012.
- 5. J. N. Gurtu and Amit Gurtu. Advanced Physical Chemistry Experiments. Pragati Prakashan. 2011.

Course Code:	CH2 207	
Course Name:	Applications of Semiconductors	
L-T-P-C	2-0-0-2	
	Unit I	
	Syllabus	Hours
Photonic Device		15
Radiative and non radiative transition	s, optical absorption, diode photodetectors, solar cell, LED, diode	
laser, optical gain and threshold cur	rrent for lasing, Fabry-Perrot cavity length for lasing, and the	
separation		
	Unit II	
	Syllabus	Hours
Memory Devices		15
Static and Dynamic Random Access	memories (SRAM and DRAM), CMOS and NMOS, nonvolatile -	
NMOS, magnetic, optical and ferroelec	· ·	
141400, magnetic, optical and left ocice	ture memories, charge coupled devices (CCD)	

Textbooks

- 1. R. K. Puri and V. K. Babbar. Solid State Physics. S. Chand & Co. Ltd. 2010.
- 2. V. K. Mehta. Principles of Electronics. S. Chand & Co. Ltd. 2014, 7th Ed.
- 3. A. Bieser. Concepts of Modern Physics. Tata McGraw-Hill. 2002, 6th Ed.

- 1. R. K. Hair and S. L. Gupta. Engineering Physics. Dhanpat Rai. 2012.
- 2. Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons. 2018, 8th Ed.
- 3. S. M. Sze and Kwok K. Ng. Physics of Semiconductor Devices. Wiley. 1996.
- 4. P. Bhattacharya. Semiconductor Opto-Electronic Devices. Prentice Hall. 1996. 2nd Ed.
- 5. M. K. Achuthan and K. N. Bhat. Fundamentals of Semiconductor Devices. McGraw Hill Education. 2007. 1st Ed.
- 6. J. Allison. Electronic Engineering Materials and Devices. McGraw Hill Education. 1990.

Course Code: Course Name:		CH2 208	
		Applications of Semiconduc	Applications of Semiconductors Laboratory
L-T-P-C		0-0-4-2	
S. No.	List of experi	ments to be conducted	Hours
1.	Numerical aperture of a fiber		8
2.	Fabry-Perrot interferometer		8
3.	Michelson's interferometer		8
4.	Laser characteristics		8
5.	Characteristics of a solar cell		8
6.	LED Characteristics		8
	List of	virtual experiments	•
	List of	virtual experiments	

- 1. V. K. Mehta, Principles of Electronics, S. Chand & D. Ltd., 2007
- 2. Kumar P. R. S., Practical Physics, PHI, 2011
- 3. Harnam Singh and P. S. Hemne, Practical Physics, S. Chand & D. Ltd., 2000.
- 4. S. K. Ghosh, Advanced Practical Physics, NCBA, 2010

Course Code:	CH2 209	
Course Name:	Professional Communications	i
L-T-P-C	2-0-0-2	
	Unit I	
Syllab	ous	Hours
Oral communications		15
Written communications		
 Foundation of creative expressions 		
 Interpersonal communications 		
-	Unit II	·
Syllab	ous	Hours
Skill enhancement		15
Personality grooming		
Role play practice		

Textbooks

1. Jeff Butterfield, Soft Skills for Everyone by. Cengage publications. 2020, 2nd Ed.

- 1. Barun K Mitra. Personality Development and Soft Skills. Oxford University Press India. 2016, 2nd Ed.
- 2. Edward de Bono. Lateral Thinking: Creativity Step by Step. Harper Perennial. 2015, Reissue Ed.

Course Code:	CH2 210	
Course Name:	Software for Scientific Learning	
L-T-P-C	2-0-0-2	
Ur	nit I	
Syllabus		Hours
Chem Draw: Chemical structure drawing, Name-to-Structure, Structure-to-Name, Realistic 3D conformation of molecules, 1H and 13C NMR predictions, and integrations to scientific literature databases. Access safety data from regulatory agencies, and find chemical suppliers. Biochemical drawings. <i>Chem Craft:</i> Chemical structure drawing of various molecules. <i>EndNote:</i> Techniques of scientific literature management.		15
Un	it II	
Syllabus		Hours
Origin: Drawing of scientific graphs using data files in various of graphs to various image file formats such as JPEG, PNG, Draw and edit scientific graphs and images. <i>Gauss view:</i> I Set up calculations, and analyze the results.	GIF, EPS, TIFF, etc. <i>Adobe Illustrator/Photoshop:</i>	15

- 1. ChemDraw 21.0 User Guide. PerkinElmer
- 2. ChemDraw 17.0 User Guide. PerkinElmer
- 3. Prof. Dr. Stefan Bienz. Short Manual to the Chemical Drawing Program ChemDraw®. University of Zurich.
- 4. EndNote: a Beginner's Guide. Library Subject Guide. RMT University.

Course Code:	CH2 211	
Course Name:	Renewable Energy	
L-T-P-C	2-0-0-2	
U	nit I	
Syllabı	ıs	Hours
Fossil fuels and Alternate Sources of Energy: Fossil furenewable energy, and nonconventional energy sources Energy, Tidal Energy, Wave energy systems, Ocean The biochemical conversion, biogas generation, geothermal energy	s. An overview of developments in Offshore Wind ermal Energy Conversion, solar energy, biomass,	15
U	nit II	
Syllabı	IS	Hours
Solar energy: Solar energy, its importance, storage of so applications of the solar pond and solar energy, solar wat cooker, solar greenhouses, solar cell, absorption air con (PV) systems, PV models and equivalent circuits, and sun	er heater, flat plate collector, solar distillation, solar ditioning. Need and characteristics of photovoltaic	15
Uı	nit III	
Syllabı	ıs	Hours
Wind and hydro Energy harvesting: Fundamentals of W	ind energy. Wind Turbines and different electrical	10

- 1. B.H. Khan. Non-conventional energy sources. McGraw Hill Education India Private Limited. 2017, 3rd Ed.
- 2. Suhas P Sukhative. Solar energy. Tata McGraw Hill Publishing Company Ltd. 2017 4th Ed.
- 3. Godfrey Boyle. Renewable Energy, Power for a sustainable future. Oxford University Press. 2012, 3rd Ed.

~: The End:~